docsense.models
Model implementations for DocSense.
- class EmbeddingModel(model_name='Qwen/Qwen2-7B', device='cuda', max_length=512, normalize_embeddings=True)[source]
- Text embedding model using Qwen. - __init__(model_name='Qwen/Qwen2-7B', device='cuda', max_length=512, normalize_embeddings=True)[source]
- Initialize the embedding model. 
 
- class LLMModel(model_name='Qwen/Qwen2-7B', device='cuda', max_length=2048, temperature=0.0, top_p=1.0, repetition_penalty=1.1)[source]
- Wrapper for Qwen language model. - Parameters:
 - __init__(model_name='Qwen/Qwen2-7B', device='cuda', max_length=2048, temperature=0.0, top_p=1.0, repetition_penalty=1.1)[source]
- Initialize the LLM model. - Parameters:
- model_name ( - str) – Name of the Qwen model to use
- device ( - str) – Device to run the model on (‘cuda’ or ‘cpu’)
- max_length ( - int) – Maximum sequence length for generation
- temperature ( - float) – Sampling temperature (0.0 for deterministic output)
- top_p ( - float) – Nucleus sampling parameter (1.0 for no filtering)
- repetition_penalty ( - float) – Penalty for repeating tokens
 
 
 
Modules
| Text embedding model implementation using Qwen. | |
| LLM (Large Language Model) wrapper implementation. |